极坐标曲线Sin[2 x] + n与凸曲线
1、ρ=Sin[2 x] + n在n=0的图像:PolarPlot[Sin[2 x] + n /. n -> 0, {x, 0, 2 Pi}]
![极坐标曲线Sin[2 x] + n与凸曲线](https://exp-picture.cdn.bcebos.com/2e66f9ef28066b0169911bf33df39187021cf3e3.jpg)
3、n从0变到1,曲线发生了连续变形。很明显,这个过程中曲线不可能是凸曲线,甚至不是简单曲线。
![极坐标曲线Sin[2 x] + n与凸曲线](https://exp-picture.cdn.bcebos.com/fab31cb375d7997baeb9f2ebf9dade49600fd9e3.jpg)
5、凸曲线有一个简单的判定定理:平面简单闭曲线是凸曲线的充分必要条件是各个点的相对曲率不变号。因此,先求出曲线各点的相对曲率公式:k = (x1 y2 - x2 y1)/(x1^2 + x2^2)^(3/2) // FullSimplify
![极坐标曲线Sin[2 x] + n与凸曲线](https://exp-picture.cdn.bcebos.com/3fe32442a07aa010927ec48bbfbb19efa35f3ee0.jpg)
7、再看看n继续增大,从2到10。可以发现,某个时刻开始,k恒大于0了,这说明曲线已经变成了凸曲线。
![极坐标曲线Sin[2 x] + n与凸曲线](https://exp-picture.cdn.bcebos.com/23fd63c5cf672b5f920b2d253314f4d0b40327e0.jpg)
9、n=5是曲线Sin[2 x] + n变成凸曲线的临界值。Table[If[Length[Solve[k == 0, x, Reals]] > 0, n, 0], {n, 49/10, 51/10, 1/90}]
![极坐标曲线Sin[2 x] + n与凸曲线](https://exp-picture.cdn.bcebos.com/47bf594ec28333bf6aa21dfcdbb8b43ea9db1de0.jpg)